Tag: xử lý nước thải bệnh viện

Tổng quan về xử lý nước thải bệnh viện

Tổng quan về xử lý nước thải bệnh viện

Theo kết quả phân tích của các cơ quan chức năng, 80% nước thải từ bệnh viện là nước thải bình thường (tương tự nước thải sinh hoạt) chỉ có 20% là những chất thải nguy hại bao gồm chất thải nhiễm khuẩn từ các bệnh nhân, các sản phẩm của máu, các mẫu chẩn đoán bị hủy, hóa chất phát sinh từ trong quá trình giải phẫu, lọc máu, hút máu, bảo quản các mẫu xét nghiệm, khử khuẩn.

Tổng quan về xử lý nước thải bệnh viện

Tổng quan về xử lý nước thải bệnh viện

Nguồn gốc nước thải bệnh viện

Từ nhiều nguồn:

Sinh hoạt của bệnh nhân, người nuôi bệnh nhân, cán bộ và công nhân viên của bệnh viện;
Pha chế thuốc;
Tẩy khuẩn;
Lau chùi phòng làm việc;
Phòng bệnh nhân…
Thành phần, tính chất xử lý nước thải bệnh viện
Các thành phần chính gây ô nhiễm môi trường do nước thải bệnh viện gây ra là:

Các chất hữu cơ;
Các chất dinh dưỡng của ni-tơ (N), phốt-pho (P);
Các chất rắn lơ lửng;
Các vi trùng, vi khuẩn gây bệnh: Salmonella, tụ cầu, liên cầu, virus đường tiêu hóa, bại liệt,
các loại kí sinh trùng, amip, nấm…
Các mầm bệnh sinh học khác trong máu, mủ, dịch, đờm, phân của người bệnh;
Các loại hóa chất độc hại từ cơ thể và chế phẩm điều trị, thậm chí cả chất phóng xạ.
Theo kết quả phân tích của các cơ quan chức năng, 80% nước thải từ bệnh viện là nước thải bình thường (tương tự nước thải sinh hoạt) chỉ có 20% là những chất thải nguy hại bao gồm chất thải nhiễm khuẩn từ các bệnh nhân, các sản phẩm của máu, các mẫu chẩn đoán bị hủy, hóa chất phát sinh từ trong quá trình giải phẫu, lọc máu, hút máu, bảo quản các mẫu xét nghiệm, khử khuẩn.
Với 20% chất thải nguy hại này cũng đủ để các vi trùng gây bệnh lây lan ra môi trường xung quanh. Đặc biệt, nếu các loại thuốc điều trị bệnh ung thư hoặc các sản phẩm chuyển hóa của chúng… không được xử lý‎ đúng mà đã xả thải ra bên ngoài sẽ có khả năng gây quái thai, ung thư cho những người tiếp xúc với chúng.

Công nghệ xử lý nước thải bệnh viện

Công nghệ xử lý nước thải bệnh viện

Hệ thống xử lý nước thải bệnh viện Bộ Công Thương có các bể như: xử lý hiếu khí với giá thể lưu động( Oxic & MBBR),yếm khí ( Anaerobic Process), thiếu khí (Anoxic) và ngăn khử trùng.

Công nghệ xử lý nước thải bệnh viện

Công nghệ xử lý nước thải bệnh viện

Công nghệ xử lý nước thải bệnh viện AAO&MBBR là công nghệ lai hợp hybri được sử dụng khá rộng rãi hiện nay, phù hợp để xử lý các loại nước thải chứa nhiều chất hữu cơ ô nhiễm dễ phân hủy sinh học như: sản xuất bánh kẹo, nước thải thủy sản, nước thải mía đường, nước thải bệnh viện, nước thải khách sạn, nước thải đô thị, sản xuất tinh bột sắn….
Ở nội dung bài viết này chúng tôi xin đề cập về hệ thống xử lý nước thải bệnh viện mà chúng tôi đã xử lý thành công. Giá thành hệ thống chỉ rẻ bằng 1/3 so với nhập từ Nhật về, thiết bị hoàn toàn không thua kém do chúng tôi sử dụng hàng G7.

XỬ LÝ NƯỚC THẢI BỆNH VIỆN ĐIỀU DƯỠNG VÀ PHỤC HỒI CHỨC NĂNG BỘ CÔNG THƯƠNG.

Về khách hàng

Bệnh Viện Điều Dưỡng và Phục Hồi Chức Năng Bộ Công Thương là cơ sở y tế của bộ Công Thương với nhiệm vụ chú trọng công tác phòng bệnh, thực hiện tốt nội dung chăm sóc sức khỏe cho cán bộ công nhân viên toàn ngành. Hàng năm bệnh viện trực thuộc Bộ Công Thương khám chữa bệnh cho CBNV các đơn vị thuộc ngành như: Nhà máy thuốc lá Sài Gòn, Bia Sài Gòn, Đường Biên Hòa, Cáp điện Cadivi,…. Từ đó cho thấy toàn ngành Công Thương có gần 2.000 người mắc bệnh nghề nghiệp, trong đó chủ yếu là bệnh bụi phổi Silíc, bệnh điếc nghề nghiệp và các bệnh khác cần được chữa trị. Do đó, nước thải phát sinh từ việc khám và chữa bệnh khoảng gần 500 m3 cần phải xử lý.

Do Bệnh Viện Điều Dưỡng và Phục Hồi Chức Năng Bộ Công Thương có mặt bằng dành cho việc bố trí hệ thống xử nước thải bệnh viện nhỏ nên chúng tôi sử dụng công nghệ lai hợp Hybri bùn hoạt tính và giá thể lơ lửng.

Thành phần tính chất nước thải bệnh viện

– Nước thải phát sinh từ rất nhiều khâu khác nhau trong quá trình hoạt động của bệnh viện như: máu, dịch cơ thể, giặt quần áo bệnh nhân, khăn lau, chăn mền cho các giường bệnh, súc rửa các vật dụng y khoa, xét nghiệm, giải phẩu, sản nhi, vệ sinh, lau chùi làm sạch các phòng bệnh,…
– Đây là loại nước thải có chứa nhiều chất hữu cơ và các vi trùng gây bệnh.
– Nồng độ BOD5, COD trong nước thải không cao, rất thích hợp cho quá trình xử lý sinh học.

Phương pháp xử lý nước thải bệnh viện

Hệ thống xử lý nước thải bệnh viện Bộ Công Thương có các bể như: xử lý hiếu khí với giá thể lưu động( Oxic & MBBR),yếm khí ( Anaerobic Process), thiếu khí (Anoxic) và ngăn khử trùng.

Ngăn xử lý kị khí trong hệ thống xử lý nước thải bệnh viện:

Nước thải bệnh viện tuy các chỉ danh COD, BOD không lớn lắm song trong nước thải bệnh viện có các thành phần chất ô nhiễm như: máu, mủ, nước rửa phim, thuốc kháng sinh…khó phân hủy hiếu khí nên chúng tôi đề xuất phương án kỵ khí nhằm xử lý cắt mạch các hợp chất hữu cơ phức tạp về dạng đơn giản, tạo môi trường thuận lợi cho các vi sinh vật thiếu khí xử lý nito.

Phương trình phản ứng sinh hóa trong điều kiện kỵ khí có thể biểu diễn đơn giản như sau :

Chất hữucơ + VSV ——–> CH4 + CO2 + H2 + NH3 + H2S + Tế bào mới

Một cách tổng quát, quá trình phân hủy kỵ khí xảy ra theo 03 giai đoạn trong quá trình xử lý nước thải bệnh viện :
– Giai đoạn 1 (Thủy phân): cắt mạch các hợp chất cao phân tử thành các chất hữu cơ đơn giản hơn như monosacarit, amono axit hoặc các muối pivurat khác.
– Giai đoạn 2 (Acid hóa): chuyển hóa các chất hữu cơ đơn giản thành các loại axit hữu cơ thông trường như axit axetic hoặc glixerin, axetat,…
• CH3CH2COOH + 2H2O → CH3COOH + CO2 + 3H2
• CH3CH2 CH2COOH + 2H2O → 2CH3COOH + 2H2
– Giai đoạn 3 (Acetate hóa): giai đoạn này chủ yếu dùng vi khuẩn lên men mêtan như Methanosarcina và Methanothrix, để chuyển hóa axit axetic và hyđro thành CH4 và CO2.
• CH3COOH → CO2 + CH4
• CH3COO- + H2O → CH4 + HCO3-
• HCO3- + 4H2 → CH4 + OH- + 2H2O.

Ngăn thiếu khí (Anoxic)trong hệ thống xử lý nước thải bệnh viện:

Xử lý nước thải bệnh viện

Là nơi lưu trú của các chủng vi sinh khử N, P nên quá trình nitrat hoá và quá trình photphoril hóa xảy ra liên tục ở đây.
– Quá trình nitrat hóa:
• Hai loại vi khuẩn chính tham gia vào quá trình này là Nitrosomonas và Nitrobacter. Khi môi trường thiếu ôxy ( 0,1 -0,5 g/l), các loại vi khuẩn khử nitrat Denitrificans sẽ tách ôxy của nitrat (NO3-) và nitrit (NO2-) để ôxy hóa chất hữu cơ. Nitơ phân tử N2¬ tạo thành trong quá trình này sẽ thoát khỏi nước.
• Quá trình chuyển hóa NO3-→ NO2-→ NO → N2O →N2 với việc sử dụng mêtanol được thể hiện ở phương trình sau:
NH4+ Oxidation NO2- + NO3- + H+ + H2O
NO2-,NO3- Redution N2 => escape to air
– Quá trình photphoril hóa:
• Vi khuẩn tham gia vào quá trình photphoril hóa là Acinetobacter sp. Khả năng lấy photpho của vi khuẩn này sẽ tăng lên rất nhiều khi cho nó luân chuyển các điều kiện thiếu khí và kỵ khí.
• Quá trình photphoril hóa được thể hiện như phương trình sau:
PO4-3 Microorganism (PO4-3)salt =>sludge
Để nitrat hóa, photphoril hóa thuận lợi, tại ngăn Anoxic bố trí máy khuấy trộn chìm với tốc độ khuấy trộn phù hợp

Ngăn xử lý hiếu khí trong hệ thống xử lý nước thải bệnh viện:

Phương pháp sinh học hiếu khí sử dụng nhóm vi sinh vật hiếu khí, hoạt động trong điều kiện cung cấp oxy liên tục. Các vi sinh vật này sẽ phân hủy các chất hữu cơ có trong nước thải và thu năng lượng để chuyển hóa thành tế bào mới, một phần chất hữu cơ bị oxy hóa hoàn toàn thành CO2, H2O, NO3-, SO42-,… Quá trình phân hủy các chất hữu cơ nhờ vi sinh vật gọi là quá trình oxy hóa sinh hóa.
Tốc độ quá trình oxy hóa sinh hóa phụ thuộc vào nồng độ các chất hữu cơ, hàm lượng các tạp chất, mật độ vi sinh vật và mức độ ổn định lưu lượng của nước thải ở trạm xử lý. Ở mỗi điều kiện xử lý nhất định, các yếu tố chính ảnh hưởng đến tốc độ phản ứng oxy hóa sinh hóa là chế độ thủy động, hàm lượng oxy trong nước thải, nhiệt độ, pH, dinh dưỡng và các nguyên tố vi lượng… Tải trọng chất hữu cơ của bể sinh học hiếu khí thường dao dộng từ 0,8-1.9 kg BOD/m3.ngày đêm. Nồng độ oxy hòa tan trong nước thải ở bể sinh học hiếu khí cần được luôn luôn duy trì ở giá trị lớn hơn 2 mg/l.
Tốc độ sử dụng oxy hòa tan trong bể sinh học hiếu khí phụ thuộc vào:
– Tỷ số giữa lượng thức ăn (chất hữu cơ có trong nước thải) và lượng vi sinh vật: tỷ lệ F/M;
– Nhiệt độ;
– Tốc độ sinh trưởng và hoạt độ sinh lý của vi sinh vật (bùn hoạt tính);
– Nồng độ sản phẩm độc tích tụ trong quá trình trao đổi chất;
– Lượng các chất cấu tạo tế bào;
– Hàm lượng oxy hòa tan.
Về nguyên tắc phương pháp này gồm 3 giai đoạn như sau:
• Chuyển các chất ô nhiễm từ pha lỏng tới bề mặt tế bào vi sinh vật;
• Khuếch tán từ bề mặt tế bào qua màng bán thấm do sự chênh lệch nồng độ bên trong và bên ngoài tế bào;
• Chuyển hóa các chất trong tế bào vi sinh vật, sản sinh năng lượng và tổng hợp tế bào mới.
Cơ chế quá trình xử lý hiếu khí:
• Giai đoạn I – Oxy hóa toàn bộ chất hữu cơ có trong nước thải để đáp ứng nhu cầu năng lượng của tế bào

• Giai đoạn II (Quá trình đồng hóa) – Tổng hợp để xây dựng tế bào

• Giai đoạn III (Quá trình dị hóa) – Hô hấp nội bào

• Ưu điểm của công nghệ MBBR:
– Giá thể lưu động MBBR(Moving Bed Biological Reactor) được cho vào ngăn MBBR để giảm thể tích bể Aerotank, tăng cường khả năng xử lý chịu shock tải, an toàn trong quá trình vận hành hệ thống và dễ dàng nâng công suất mà không cần phải đầu tư nhiều.

– Công nghệ lai hợp Hibri này dùng trong xử lý nước thải bệnh viện sẽ giúp chủ đầu tư linh hoạt trong việc bố trí mặt bằng. Tải trọng của giá thể dạng bánh phồng tôm của hãng Biochip có thể lên tới 15 – 30 kg BOD/m3 giá thể.

Ngăn khử trùng trong hệ thống xử lý nước thải bệnh viện:

Khử trùng là biện pháp bắt buộc theo quy định của nhà nước, nhằm loại bỏ tất cả các loại vi khuẩn, vi rút có trong nước thải sau quá trình xử lý, để đảm bảo điều kiện vệ sinh và tránh các dịch bệnh mà các vi khuẩn đó gây ra.
Ngoài việc diệt các loại vi khuẩn gây bệnh, quá trình này còn tạo điều kiện để oxy hóa các chất hữu cơ và đẩy nhanh các quá trình làm sạch nước thải. Hóa chất dùng trong quá trình này là clo.
– Khử trùng: Khi đưa Cl vào nước, Cl sẽ bị thủy phân theo phản ứng sau:
Cl2 + H2O ↔ HCl + HOCl
• Axit hypocloric HOCl rất yếu, không bền và dễ phân hủy ngay thành HCl và ôxy nguyên tử, hoặc có thể phân ly thành H+ và OCl-
HOCl ↔ HCl + O
HOCl ↔ H+ + OCl-
Tất cả các chất HOCl, OCl- và O là các chất oxy hóa mạnh, các chất này oxy hóa nguyên sinh chất và khử hoạt tính của men, làm tế bào bị tiêu diệt.

Theo TCXD nhà nước có hướng dẫn: Đối với công trình xử lý nước thải qua quá trình xử lý sinh học hoàn toàn thì lượng clo vào khoảng 3 mg/l -7 mg/l

Nước thải bệnh viện sau thời gian tiếp xúc với hóa chất khử trùng, vi khuẩn bị tiêu diệt, nước sau xử lý đạt tiêu chẩn xả thải ra môi trường.

Hiệu quả xử lý trong quá trình xử lý nước thải bệnh viện Bộ Công Thương

Xử lý nước thải bệnh viện Điều Dưỡng & Phục Hồi Chức Năng Bộ Công Thương sau khi xử đạt chuẩn A theo quy chuẩn nhà nước Việt Nam ban hành. Hiệu suất xử lý: BOD 15 mg/l hiệu suất xử lý 96%, COD: 36 mg/l hiệu suất xử lý 93%, NO3­-: 28,56 mg/l hiệu suất xử lý 44%, Phosphate 4,2 mg/l hiệu suất xử lý 70%

Nước thải bệnh viện Điều Dưỡng & Phục Hồi Chức Năng Bộ Công Thương sau xử lý đạt quy chuẩn QCVN 28:2010 cột A được phép xả ra môi trường.

Nếu quý khách có nhu cầu xây dựng hệ thống xử lý, hãy gọi ngay công ty môi trường Chúng tôi để được tư vấn miễn phí các công nghệ xử lý nước thải bệnh viện mới nhất, hiện đại nhất của chúng tôi.

Phần mềm tính toán lượng khí cấp cho bể Aerotank

Hướng dẫn sử dụng phần mềm tính toán lượng khí:

Các bạn chuẩn bị các số liệu đầu vào như: Lưu lượng nước thải (Q=m3/ngày.đêm), BOD5 đầu vào bể aerotank mg/l, NH4 mg/l. Các bạn nhập vào ô để trống tương ứng với các thông số trên rồi xem kết quả ô Qkk dưới cùng (m3/ngày). Lấy kết quả chia cho 24 giờ để đổi ra m3 khí/giờ, chia tiếp cho 60 phút để có kết quả m3 khí/phút. Chúc các bạn thành công.

Phần mềm tính lượng bùn hoạt tính
Phần mềm tính tỷ số F/M
Phần mềm tính ? – Tốc độ sử dụng thức ăn của vi sinh
Tính thể tích bể Aerotank
Tính lượng bùn hóa lý sinh ra
Phần mềm kiểm tra tải trọng thể tích bể Aerotank

Phương pháp xử lý nước thải bệnh viện bằng công nghệ AAO – MBR

Phương pháp xử lý nước thải bệnh viện bằng công nghệ AAO - MBR

Ứng với nó là hai dạng điều khiển thủy lực: bơm và nén khí. Cấu hình và dạng chuyển động của chất lỏng trong bể phản ứng nào được sử dụng thông thường phụ thuộc vào quá trình tách sinh khối. Tuy nhiên ở cả hai dạng thiết bị này, quá trình thẩm thấu (eMBR) và khuếch tán (dMBR) đều diễn ra, và có thể sử dụng với không chỉ mục đích tách sinh khối ra khỏi nước đã xử lý. Các cấu hình màng sử dụng cho hai dạng thiết bị này cũng khác nhau.

Phương pháp xử lý nước thải bệnh viện bằng công nghệ AAO - MBR

Phương pháp xử lý nước thải bệnh viện bằng công nghệ AAO – MBR

Công ty môi trường Chúng tôi chuyên nhận xử lý nước thải, khí thải và chất thải rắn. Với những kỹ năng và kinh nghiệm thực tế trên mười năm hoạt động trong nghề, công ty chúng tôi đã tìm hiểu và nghiên cứu kỹ tính chất nước thải bệnh viện, từ đó đưa ra phương pháp xử lý nước thải bệnh viện bằng công nghệ AAO kết hợp MBR, đây là công nghệ tiên tiến, được nhiều nước trên thế giới áp dụng nhằm xử lý hiệu quả các loại nước thải chứa nhiều chất hữu cơ và vi trùng gây bệnh (như nước thải bệnh viện), giảm được chi phí vận hành và tiết kiệm diện tích xây dựng.

I. CÔNG NGHỆ XỬ LÝ NƯỚC THẢI BỆNH VIỆN BỘ CÔNG THƯƠNG AAO & MBR.

II. XỬ LÝ NƯỚC THẢI BỆNH VIỆN ĐIỀU DƯỠNG VÀ PHỤC HỒI CHỨC NĂNG BỘ CÔNG THƯƠNG.

2.1. Chủ đầu tư

Cơ sở y tế của Bộ Công Thương có nhiệm vụ chú trọng công tác phòng bệnh, thực hiện tốt nội dung chăm sóc sức khỏe cho cán bộ công nhân viên toàn ngành. Các bệnh viện, phòng khám bệnh của Bộ Công Thương trải đều khắp đất nước nhằm phục vụ, chăm lo cho đời sống cán bộ công nhân viên toàn ngành.

2.2. Thành phần tính chất nước thải bệnh viện

– Nước thải phát sinh từ rất nhiều khâu khác nhau trong quá trình hoạt động của bệnh viện như: máu, dịch cơ thể, giặt quần áo bệnh nhân, khăn lau, chăn mền cho các giường bệnh, súc rửa các vật dụng y khoa, xét nghiệm, giải phẩu, sản nhi, vệ sinh, lau chùi làm sạch các phòng bệnh,…
– Đây là loại nước thải có chứa nhiều chất hữu cơ và các vi trùng gây bệnh.
– Nồng độ BOD5, COD trong nước thải không cao, rất thích hợp cho quá trình xử lý sinh học.

2.3. Phương pháp xử lý nước thải bệnh viện

Công nghệ AAO&MBR do công ty môi trường Chúng tôi chế tạo là dạng module bồn bể hợp khối, lắp đặt tại bệnh viện có 5 modul. Các module hoạt động độc lập, có kích thước: đường kính 2,05 m, chiều dài của modul là 11,7 m, độ dày của thành bồn là 6 mm. Chất liệu chế tạo bồn là sợi thủy tinh composite có độ bền trên 50 năm, đạt tiêu chuẩn xuất khẩu sang Nhật Bản. Thiết bị gồm có: máy thổi khí công suất 2,5 kW và bơm chìm công suất 1,5 kW. Công nghệ này tiết kiệm điện năng, diện tích xây dựng lên đến 50% so với công nghệ truyền thống. Module có các ngăn: xử lý hiếu khí với màng sinh học vi lọc (Aerobic & MBR), yếm khí (Anaerobic Process), thiếu khí (Anoxic).

2.3.1. Ngăn xử lý kị khí:

Nước thải bệnh viện tuy có các chỉ danh COD, BOD không lớn lắm, song trong nước thải bệnh viện có các thành phần chất ô nhiễm như: máu, mủ, nước rửa phim, thuốc kháng sinh… khó phân hủy hiếu khí nên chúng tôi đề xuất phương án kỵ khí nhằm xử lý triệt để các chất ô nhiễm trong nước thải bệnh viện. Chất hữu cơ trong nước thải sau khi xử lý kỵ khí thì sẽ chuyển hóa thành chất khí như: CO, CH4, NH3, H2S…
Nước thải từ bể điều hòa được bơm lên ngăn kị khí, tại đây quá trình phân hủy kỵ khí các chất hữu cơ là quá trình sinh hóa phức tạp tạo ra hàng trăm sản phẩm và phản ứng trung gian. Tuy nhiên, phương trình phản ứng sinh hóa trong điều kiện kỵ khí có thể biểu diễn đơn giản như sau:

Chất hữu cơ + VSV ——–> CH4 + CO2 + H2 + NH3 + H2S + Tế bào mới

Một cách tổng quát, quá trình phân hủy kỵ khí xảy ra theo 3 giai đoạn :
– Giai đoạn 1 (Thủy phân): cắt mạch các hợp chất cao phân tử thành các chất hữu cơ đơn giản hơn như monosacarit, amino axit hoặc các muối pivurat khác.
– Giai đoạn 2 (Acid hóa): chuyển hóa các chất hữu cơ đơn giản thành các loại axit hữu cơ thông trường như axit axetic hoặc glixerin, axetat,…
• CH3CH2COOH + 2H2O → CH3COOH + CO2 + 3H2
Axit prifionic axit axetic
• CH3CH2CH2COOH + 2H2O → 2CH3COOH + 2H2
Axit butiric axit axetic
– Giai đoạn 3 (Acetate hóa): giai đoạn này chủ yếu dùng vi khuẩn lên men mêtan như Methanosarcina và Methanothrix, để chuyển hóa axit axetic và hyđro thành CH4 và CO2.
• CH3COOH → CO2 + CH4
• CH3COO- + H2O → CH4 + HCO3-
• HCO3- + 4H2 → CH4 + OH- + 2H2O
Tại ngăn kị khí, chúng tôi xử lý sinh học kị khí dòng chảy ngược qua lớp bùn, là công nghệ Hà Lan đã được kiểm chứng qua rất nhiều công trình trình thế giới. Các vách hướng dòng xáo trộn dòng nước thải với bùn hoạt tính thúc đẩy quá trình phân hủy chất hủy cơ nhanh hơn. Nước sau đó tự chảy tràn qua ngăn hiếu khí.

2.3.2. Ngăn xử lý hiếu khí:

Phương pháp sinh học hiếu khí sử dụng nhóm vi sinh vật hiếu khí, hoạt động trong điều kiện cung cấp oxy liên tục. Các vi sinh vật này sẽ phân hủy các chất hữu cơ có trong nước thải và thu năng lượng để chuyển hóa thành tế bào mới, một phần chất hữu cơ bị oxy hóa hoàn toàn thành CO2, H2O, NO3-, SO42-,… Quá trình phân hủy các chất hữu cơ nhờ vi sinh vật gọi là quá trình oxy hóa sinh hóa.
Tốc độ quá trình oxy hóa sinh hóa phụ thuộc vào nồng độ các chất hữu cơ, hàm lượng các tạp chất, mật độ vi sinh vật và mức độ ổn định lưu lượng của nước thải ở trạm xử lý. Ở mỗi điều kiện xử lý nhất định, các yếu tố chính ảnh hưởng đến tốc độ phản ứng oxy hóa sinh hóa là chế độ thủy động, hàm lượng oxy trong nước thải, nhiệt độ, pH, dinh dưỡng và các nguyên tố vi lượng… Tải trọng chất hữu cơ của bể sinh học hiếu khí thường dao dộng từ 0,32-0,64 kg BOD/m3.ngày đêm. Nồng độ oxy hòa tan trong nước thải ở bể sinh học hiếu khí cần được luôn luôn duy trì ở giá trị lớn hơn 2,5 mg/l.
Tốc độ sử dụng oxy hòa tan trong bể sinh học hiếu khí phụ thuộc vào:
– Tỷ số giữa lượng thức ăn (chất hữu cơ có trong nước thải) và lượng vi sinh vật: tỷ lệ F/M;
– Nhiệt độ;
– Tốc độ sinh trưởng và hoạt độ sinh lý của vi sinh vật (bùn hoạt tính);
– Nồng độ sản phẩm độc tích tụ trong quá trình trao đổi chất;
– Lượng các chất cấu tạo tế bào;
– Hàm lượng oxy hòa tan.
Về nguyên tắc phương pháp này gồm 3 giai đoạn như sau:
• Chuyển các chất ô nhiễm từ pha lỏng tới bề mặt tế bào vi sinh vật;
• Khuếch tán từ bề mặt tế bào qua màng bán thấm do sự chênh lệch nồng độ bên trong và bên ngoài tế bào;
• Chuyển hóa các chất trong tế bào vi sinh vật, sản sinh năng lượng và tổng hợp tế bào mới.
Cơ chế quá trình xử lý hiếu khí:
• Giai đoạn I – Oxy hóa toàn bộ chất hữu cơ có trong nước thải để đáp ứng nhu cầu năng lượng của tế bào

• Giai đoạn II (Quá trình đồng hóa) – Tổng hợp để xây dựng tế bào

• Giai đoạn III (Quá trình dị hóa) 0– Hô hấp nội bào

• Đặc điểm của công nghệ MBR:

Với việc sử dụng màng MBR, chúng ta có thể phân tách được các tạp chất trong nước dựa vào sự chênh lệch về kích thước cơ học của chúng. Theo đó, việc màng có kích cỡ càng nhỏ thì có khả năng tách càng tốt, tuy nhiên có áp suất cần thiết để hút chất lỏng qua màng càng cao. Tuy nhiên có 2 quá trình màng khác cũng có khả năng giữ lại chất bẩn và cho phép nước đi qua, đó là:

– Khả năng chọn lọc các cấu tử thấm qua (thẩm thấu).

– Cho phép các phân tử đi vào (khuếch tán).

Việc loại bỏ chất bẩn có một giới hạn cơ bản trong tất cả các quá trình màng. Các phần tử bị tách khỏi nước có xu hướng tích lũy trên bề mặt màng, tạo ra một hiện tượng khác là dẫn đến giảm lưu lượng nước đi qua màng (giảm thông lượng) và tăng áp suất chuyển khối qua màng. Hiện tượng này được gọi là tắc màng (fouling). Tắc màng là một giới hạn cơ bản của các thiết bị sử dụng màng, nó là lý do khiến các nhà sản xuất liên tục nghiên cứu và cải tạo vật liệu cũng như kết cấu màng.

Cấu hình màng, hay nói cách khác là dạng hình học, cách liên kết chúng với nhau và định hướng dòng chảy của nước là rất quan trọng đối với hiệu suất tổng thể. Cân nhắc thực tế khác liên quan đến cách thức bố trí cụm màng đó là các đơn vị màng riêng biệt, chúng được chứa trong “vỏ” (shell) để tạo nên những module, hình thành nên “mạch” để dòng nước đi qua. Các tiêu chí cơ bản để hình thành cấu hình màng:

– Tỷ lệ diện tích bề mặt màng đối với thể tích module cao

– Độ chảy rối của quá trình chuyển khối tăng ở bề mặt màng

– Năng lượng tiêu tốn trên đơn vị thể tích nước chuyển qua thấp

– Giá thành rẻ

– Thiết kế dễ dàng làm sạch

– Thiết kế cho phép đồng bộ hóa

Hiện nay, có sáu cấu hình màng cơ bản được sử dụng, mỗi loại cấu hình có những ưu điểm và những giới hạn riêng. Phân loại cấu hình màng chủ yếu dựa trên dạng hình học và cách thức liên kết các màng, bao gồm:

(1) Tấm phẳng (flat sheet – FS)
(2) Sợi rỗng (hollow fibre – HF)
(3) Tổ hợp ống (multi tubular – MT)
(4) Ống mao dẫn (capillary – CT)
(5) Hộp lọc xếp ly (pleated filter cartridge – FC)
(6) Vết xoắn ốc (spiral-wound – SW)
Trong số các cấu hình màng kể trên, chỉ có ba loại đầu được sử dụng trong MBR với những lý do riêng: cho phép tăng độ chảy rối, dễ làm sạch, thông dụng…

Màng được tích hợp với thiết bị xử lý sinh học ở 2 dạng chủ yếu: màng ngập nước bên trong thiết bị (iMBR) và màng nằm bên ngoài bể phản ứng (sMBR).
Ứng với nó là hai dạng điều khiển thủy lực: bơm và nén khí. Cấu hình và dạng chuyển động của chất lỏng trong bể phản ứng nào được sử dụng thông thường phụ thuộc vào quá trình tách sinh khối. Tuy nhiên ở cả hai dạng thiết bị này, quá trình thẩm thấu (eMBR) và khuếch tán (dMBR) đều diễn ra, và có thể sử dụng với không chỉ mục đích tách sinh khối ra khỏi nước đã xử lý. Các cấu hình màng sử dụng cho hai dạng thiết bị này cũng khác nhau.
Nhìn chung iMBR có cường độ năng lượng sử dụng thấp hơn so với sMBR, khi ứng dụng mô hình màng với bơm nằm ngoài bể phản ứng sẽ đòi hỏi năng lượng khoảng gấp đôi so với màng ngập trong nước. Để tận dụng tốt nhất thế năng của dòng nước trong trường hợp sử dụng sMBR thì đường ống dẫn nước càng dài càng tốt.
Không những thế, sMBR còn có xu hướng tắc màng cao hơn so với iMBR bởi vì nó thường được vận hành với thông lượng cao, mà khả năng năng màng lại tăng theo thông lượng, trường hợp này ta thường dùng thuật ngữ “thông lượng giới hạn”.
Cho dù sMBR không thể tiết kiệm năng lượng được như iMBR nhưng chúng cũng có những ưu điểm:
– Có thể làm sạch màng bằng phương pháp hóa học một cách đơn giản mà không nguy hại gì đến sinh khối.
– Giá thành lắp đặt và bảo trì thấp và dễ dàng, nói riêng cho trường hợp thay thế cụm màng.
– Nhìn chung có thể vận hành sMR với MLSS cao hơn so với iMBR sử dụng loại màng tổ hợp ống.
– Quá trình sục khí có ưu thể hơn trong việc di chuyển và khuấy trộn oxy, bởi sMBR có hai quá trình: sục khí cho bể phản ứng và sục rửa màng riêng biệt.

Ưu điểm: tiết kiểm được 1/2 diện tích sử dụng, không sử dụng hóa chất khử trùng, dễ dàng tiêu chuẩn xử lý nước ra loại A, phù hợp với các bệnh viện

Nước sau đó tự chảy tràn qua ngăn thiếu khí

2.3.3. Ngăn thiếu khí (Anoxic):

Là nơi lưu trú của các chủng vi sinh khử N, P, nên quá trình nitrat hoá và quá trình photphoril hóa xảy ra liên tục ở đây.
– Quá trình nitrat hóa:
• Hai loại vi khuẩn chính tham gia vào quá trình này là Nitrosomonas và Nitrobacter. Khi môi trường thiếu ôxy, các loại vi khuẩn khử nitrat Denitrificans sẽ tách ôxy của nitrat (NO3-) và nitrit (NO2-) để ôxy hóa chất hữu cơ. Nitơ phân tử N2- tạo thành trong quá trình này sẽ thoát khỏi nước.
• Quá trình chuyển hóa NO3- → NO2- → NO → N2O →N2 với việc sử dụng mêtanol được thể hiện ở phương trình sau:
NH4+ Oxidation NO2- + NO3- + H+ + H2O
NO2-, NO3- Redution N2 => escape to air
– Quá trình photphoril hóa:
• Vi khuẩn tham gia vào quá trình phosphoril hóa là Acinetobacter sp. Khả năng lấy photpho của vi khuẩn này sẽ tăng lên rất nhiều khi cho nó luân chuyển các điều kiện hiếu khí và kỵ khí.
• Quá trình photphoril hóa được thể hiện như phương trình sau:
PO4-3 Microorganism (PO4-3) salt => sludge
Để nitrat hóa, photphoril hóa thuận lợi, tại ngăn Anoxic bố trí máy khuấy trộn chìm với tốc độ khuấy trộn phù hợp. Nước thải từ ngăn này tự chảy tràn qua ngăn khử trùng.

Nước thải bệnh viện Điều Dưỡng & Phục Hồi Chức Năng Bộ Công Thương sau xử lý đạt quy chuẩn QCVN cột A được phép xả ra môi trường.